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ABSTRACT

An elementary construction of the normal cycle of a compact definable

set in Euclidean space (and more generally of a compactly supported

constructible function) is given. Here “definable” means definable in some

o-minimal structure. The construction is based on the notion of support

function and uses only basic o-minimal geometry.

1. Introduction

The normal cycle of a compact subanalytic set in a finite-dimensional Euclidean

vector space was constructed by J. Fu in 1994 [15]. The primary motivation was

to generalize certain curvature notions to non-smooth sets. Since then, the nor-

mal cycle turned out to be useful in a number of applications. J. Fu introduced

and studied Lipschitz–Killing curvatures of subanalytic spaces. A variational

formula for Lipschitz–Killing curvatures, which implies several versions of the

Schläfli differential formula, was proved in [5]. Based on this work, several

tensor-valued curvature measures were introduced in [7].

The normal cycle is an important tool in the study of valuations on Euclidean

spaces and even on arbitrary manifolds. By a recent theorem of Alesker [1], each

GL(V )-smooth valuation on a Euclidean vector space V can be represented as

integration of a differential form against the normal cycle. This was used in

the proof of a Hard Lefschetz Theorem for translation invariant valuations in
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[9]. Smooth valuations on manifolds were studied by Alesker [1], [2], [3] and

Alesker–Fu [4] where the normal cycle of differentiable polyhedra is used.

As one application of the (co-) normal cycle in topology we mention the

construction of Chern classes of complex varieties [14] and of Stiefel–Whitney

classes [17]. Recently, the normal cycle was used to define curvature measures

for certain fractal sets [23].

Fu’s construction of the normal cycle is based on Geometric Measure Theory.

The subanalytic set is approximated by some easier sets and, with the help of the

Federer–Fleming compactness theorem, a convergent subsequence of currents

was extracted. The hard part of the proof is a uniqueness theorem, which

shows that the limit current is independent of the choices.

A sheaf-theoretical construction of the normal cycle of a subanalytic set (un-

der the name characteristic cycle) was provided at about the same time by

Kashiwara and Shapira [22].

Another construction, using Stratified Morse Theory, was given by Bröcker

and Kuppe [11]. It has the advantage of describing the normal cycle more

explicitly in terms of Morse indices. The drawback of this construction is that

it is difficult to see that the resulting current is a cycle and, moreover, that it

is really the normal cycle. Both problems can be solved with Fu’s uniqueness

theorem.

The goal of this paper is to provide a self-contained construction of the normal

cycle which does not rely on other theories like Geometric Measure Theory, Sheaf

Theory or Stratified Morse Theory. By doing so, we hope to make it easier for

subanalytic geometers to understand and use this important object. Our con-

struction only uses easy results about subanalytic sets, like cell-decompositions

and finiteness properties. In fact, the construction also works for all sets which

belong to some o-minimal structure in the sense of [28] (they will be called

definable for short) and even for so-called constructible functions.

The outline of the construction is as follows. Let V be a finite-dimen-

sional Euclidean vector space with unit sphere S(V ) and sphere bundle

SV := V ×S(V ). The key notion of the construction is that of support func-

tion. In Convex Geometry, one associates a homogeneous real-valued function

to each compact convex set in the Euclidean vector space V , its support func-

tion. By work of Bröcker [10], one can also provide constructible functions on

V with a support function. In the first section, we will recall this construction.

The support function is not a real-valued function, but a function with values in

the group ring Z[R]. Our first result, contained in Section 3, is that the support
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function of a constructible function φ is Lipschitz (with respect to the flat norm

on Z[R]) if and only if the support of φ is bounded.

We denote by Cc(V ) the set of compactly supported constructible functions.

The set of definable, Z[R]-valued Lipschitz continuous functions on the sphere

S(V ) is denoted by DLip(S(V ),Z[R]). With this notation, the first result is that

there is a bijection

Cc(V )
∼=
−→ DLip(S(V ),Z[R]).

As was remarked in [8], a compactly supported Legendrian cycle in the sphere

bundle SV also admits a support function. Since its construction is based on

Slicing Theory, it is only defined almost everywhere. With LCc(SV ) denoting

the space of compactly supported Legendrian cycles on SV , the support function

induces an injective map

LCc(SV ) → L1(S(V ),Z[R]).

In the special case we are interested in, the current is definable and the slicing

is easier. In Section 4, we will recall the definition of definable currents. We state

without proof Hardt’s slicing theorem, which will only be used in the study of

the properties of the normal cycle, but not in its construction. Our second result,

contained in Section 5, is that one can extend the support function of a com-

pactly supported definable Legendrian cycle by (Lipschitz-) continuity. Stated

otherwise, the image of the restriction of the map LCc(SV ) → L1(S(V ),Z[R]) to

definable currents is contained in DLip(S(V ),Z[R]). If a compactly supported

definable Legendrian cycle T has the same support function as a compactly

supported constructible function φ, we say that T is the normal cycle of φ.

From these results, it follows that each compactly supported definable Leg-

endrian cycle is the normal cycle of some compactly supported constructible

function. Conversely, given a compactly supported constructible function, we

will construct in Section 6 its normal cycle. Since the homogeneous extension

of the support function is piecewise C1, we can first construct the “graph of

the differential” of the support function, which is a conical Lagrangian current.

In general, it is not closed and we have to “fill the holes” in order to obtain a

conical Lagrangian cycle.

It follows that the support function provides an isomorphism between

the space of compactly supported definable Legendrian cycles on SV and

DLip(S(V ),Z[R]), the latter space being isomorphic to Cc(V ).
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The reader should keep in mind the following commutative diagram

Cc(V ) //

��

DLip(S(V ),Z[R])

��

LCc(SV ) // L1(S(V ),Z[R]).

The horizontal arrows are the support function constructions, the vertical arrow

on the left is the normal cycle construction and the vertical arrow on the right

is the inclusion of the set of Lipschitz continuous constructible functions in

L1(S(V ),Z[R]).

Acknowledgement: This paper is a short version of my Habilitationsschrift

[6]. I wish to thank the University of Fribourg, in particular R. Kellerhals,

for their hospitality. I also thank L. Bröcker and G. Comte for stimulating

discussions.

2. Support functions of constructible functions

2.1. O-minimal systems. Let us recall the definition of an o-minimal system.

Definition 2.1: An o-minimal system is a collection M = (Mn), n ∈ Z,

where each Mn is a Boolean subalgebra of the power set of R
n such that the

following axioms are satisfied:

(1) algebraic subsets of R
n belong to Mn;

(2) if X ∈ Mn, Y ∈ Mm then X × Y ∈ Mn+m;

(3) if π: R
n+1 → R

n denotes the projection on the first n coordinates and

X ∈ Mn+1, then π(X) ∈ Mn;

(4) M1 consists precisely of finite unions of points and intervals.

Examples of o-minimal sets comprise the set of semialgebraic subsets, globally

subanalytic sets or sets definable in Ran,exp, i.e. by means of the exponential

function. See [28] for details.

In the following, we will fix an o-minimal system M. By a definable set we

mean a set X ⊂ R
n which belongs to Mn. Recall also that, given a definable

set D ⊂ R
n, a function f : D → R

m is called definable if its graph is a definable

subset of R
n × R

m. From Axiom (3) we infer that the image of a definable set

under a definable function is again definable.
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Definition 2.2: Let k ∈ N. A definable Ck-cell decomposition of R is a

partition of R in finitely many cells, which are points (of dimension 0) or open

intervals (dimension 1).

A definable Ck-cell decomposition of R
n, n > 1 is given by a Ck-cell decompo-

sition of R
n−1 and, for each cell D of R

n−1, finitely many definable Ck-functions

ξD,1 < · · · < ξD,l(d): D → R.

The cells are the graphs (of dimension dimD)

{(x, ξD,i(x)) ∈ R
n−1 × R : x ∈ D}, i = 1, . . . , l(D)

and the (open) bands of dimension dimD + 1

{(x, y) ∈ R
n × R : x ∈ D, ξD,i(x) < y < ξD,i+1(x)}, i = 0, . . . , l(D)

where ξD,0 = −∞, ξD,l(D)+1 = ∞.

Theorem 2.3 (Ck-cell decomposition of definable sets): Given finitely many

definable subsets X1, . . . , Xm of R
n and k ∈ Z, there exists a definable Ck-cell

decomposition of R
n compatible with Xi, i = 1, . . . ,m (i.e. each such set is a

union of cells).

We refer to [12] for the proof.

Definition 2.4: A function φ: R
n → Z is called constructible if the range of

φ is finite and φ−1(a) is definable for each a ∈ Z. A function φ: X → Z on a

definable setX ⊂ R
n is called constructible, if its extension by 0 is constructible.

A definable subset X ⊂ R
n can be identified with its characteristic function,

which is constructible. The restriction of φ to a definable subset X will be

denoted by φ ∩X .

2.2. Euler integration.

Definition and Proposition 2.5: Let X ⊂ R
n be definable. Choose a

C0-cell decomposition of R
n such that X is a union of cells. Then the number

χ(X) :=
∑

D⊂X

(−1)dimD

is independent of the choice of the cell decomposition and called Euler char-

acteristic of X (in fact, χ(X) is the Euler characteristic with respect to Borel-

Moore homology). The Euler characteristic of a constructible function φ: V → Z
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is defined by

χ(φ) :=
∑

a∈Z

aχ(φ−1(a)).

We will also write
∫

Rn
φ(x)dχ(x) instead of χ(φ) and

∫

X
φ(x)dχ(x) instead of

χ(φ ∩X).

Theorem 2.6 (Fubini for Euler characteristic): Let X ⊂ R
n be definable

and let φ: X → Z be a constructible function. Given a definable function

f : X → R
m, the push-forward f∗φ, defined by

f∗φ(y) := χ(f−1(y) ∩ φ), y ∈ R
m

is a constructible function on R
m. Moreover,

∫

X

φ(x)dχ(x) =

∫

Rm

f∗φ(y)dχ(y).

The proof is easy using a cell-decomposition of the graph of f .

Corollary 2.7: Let φ: R
n × R

n → Z be constructible. Then

∫

Rn

∫

Rn

φ(x, y)dχ(x)dχ(y) =

∫

Rn

∫

Rn

φ(x, y)dχ(y)dχ(x).

Definition 2.8: The convolution of two constructible functions φ and ψ on

R
n is the constructible function φ ∗ ψ defined by

φ ∗ ψ(x) :=

∫

Rn

φ(y)ψ(x − y)dχ(y).

The set of constructible functions on R
n, endowed with addition + and mul-

tiplication ∗, is a commutative ring with unit 1{0}. Its prime ideals, units etc.

were studied by Bröcker [10].

Definition 2.9: Let φ be a constructible function on R
n and ψ a constructible

function on R
m. Then the exterior product φ⊗ψ is the constructible function

on R
n × R

m defined by

φ⊗ ψ(x1, x2) = φ(x1)ψ(x2) x1 ∈ R
n, x2 ∈ R

m.
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2.3. Support functions. The group ring Z[R] is the set of finite linear

combinations
∑k

i=1 aiδri , where ai ∈ Z and ri ∈ R are pairwise different. The

sum of two such elements is defined in the obvious way, and the multiplication

is given by the convolution product:

( k∑

i=1

aiδri

)

·

( l∑

j=1

bjδsj

)

=

k∑

i=1

l∑

j=1

aibjδri+sj .

Elements of Z[R] can be considered as integer multiplicity rectifiable 0-currents

on R (compare with [13]). If T =
∑k

i=1 aiδri and f ∈ C∞
c (R), then T (f) :=

∑k
i=1 aif(ri). The mass of T is M(T ) :=

∑k
i=1 |ai| and its flat norm is

F(T ) := sup{T (f) : f ∈ C∞
c (R) : ‖f‖∞ ≤ 1, ‖f ′‖∞ ≤ 1}.

The augmentation of T is the integer T (1) =
∑k
i=1 ai. We can identify R with

a subset of Z[R] by sending x to δx.

Proposition 2.10: Let φ be a constructible function on R.

(1)
∑

x∈R

lim
s→0+

(φ(x) − φ(x + s))δx

is an element of Z[R], denoted by φ′ and called jump of φ.

(2) If φ has compact support, then

φ′(1) = χ(φ).

(3) If φ is continuous from the left, then
∫

R

φ(s)dχ(s) = − lim
s→∞

φ(s).

Proof: Since φ is constructible, there exists a finite partition of R into points

and open intervals, such that φ is constant on each cell. If x belongs to an

open interval, then the coefficient before δx vanishes, from which (1) follows.

Statement (2) is easily verified. If φ is continuous from the left, then φ is

constant on finitely many half-open intervals of the from (a, b] (where a = −∞

is possible) and on one open interval (a,∞). Since χ((a, b]) = 0, χ((a,∞)) = −1,

(3) follows.

In the following, V denotes an n-dimensional Euclidean vector space. After

choice of an orthogonal basis, V can be identified with R
n. The notions de-

finable subset and constructible function are independent of the choice of

this basis.
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Definition 2.11: Let φ be a constructible function on V . For each y ∈ V let

πy: V → R, x 7→ 〈x, y〉 and define

hφ(y) := ((πy)∗φ)′ ∈ Z[R].

The function

hφ: V → Z[R]

is called support function of φ.

Proposition 2.12:

(1) hφ(0) = χ(φ)δ0.

(2) hφ is homogeneous in the following sense: if λ ≥ 0, then

hφ(λy) = (mλ)∗(hφ(y)),

where (mλ)∗(
∑

i aiδri) :=
∑

i aiδλri . Therefore, we can identify hφ with

its restriction to S(V ).

(3) If φ has compact support, then the augmentation of hφ(y) equals χ(φ) for

all y ∈ V .

(4) Given A ∈ GL(V ), define A∗φ by A∗φ(x) := φ(A−1x). Then

hA∗φ(y) = hφ(A
∗y).

(5) For constructible functions φ and ψ on V ,

hφ+ψ = hφ + hψ

hφ∗ψ = hφ · hψ.

(6) Let W be a Euclidean vector space. For a constructible function φ on V

and a constructible function ψ on W ,

hφ⊗ψ(y1, y2) = hφ(y1) · hψ(y2) ∀y1 ∈ V, y2 ∈ W.

(7) Let φ be a constructible function on V . Let W be a linear subspace and

π: V →W the orthogonal projection. Then π∗φ is a constructible function

on W and

hπ∗φ = hφ|W .

Proof: Using Fubini’s Theorem, the proofs are easy.
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Example: Let K ⊂ V be a compact (definable) convex set and φ := 1K its

characteristic function. If y ∈ V , then the push-forward (πy)∗φ is the character-

istic function of the compact interval [minx∈K〈x, y〉,maxx∈K〈x, y〉]. The jump of

this function is given by δmaxx∈K〈x,y〉. The function mapping y to maxx∈K〈x, y〉

is the classical support function of K (compare with [26]). Therefore, the sup-

port function of 1K is the same (using the embedding R → Z[R]) as the classical

support function of K.

Definition 2.13: A function h: R
n → Z[R] is called definable if the function

R
n × R → Z, (y, r) 7→ h(y)(r)

is constructible. Here h(y)(r) denotes the coefficient of δr in h(y) ∈ Z[R].

Proposition 2.14: If φ: V → Z is constructible, then hφ: V → Z[R] is defin-

able.

Proof: Again, this is an easy consequence of Theorems 2.3 and 2.6.

Theorem 2.15: A function h: V → Z[R] is the support function of a con-

structible function φ on V if and only if h is definable and homogeneous.

The “only if”-part is contained in Proposition 2.12, (2) and Proposition 2.14.

In [10] one finds the proof of the “if”-part. Below, we will prove a similar

statement.

3. Lipschitz continuity of support functions

Theorem 3.1: A function h: V → Z[R] is the support function of a compactly

supported constructible function φ on V if and only if h is definable, homoge-

neous and Lipschitz with respect to F. In this case, φ is unique.

Proof (Compact support implies Lipschitz): Suppose h = hφ is the support

function of a constructible function φ on V . By Proposition 2.12, (2) and

Proposition 2.14, h is homogeneous and definable.

Suppose that the support of φ is contained in a compact set, say sptφ ⊂

B(0, R), R > 0. Since h is definable, there is an M > 0 with

M(h(y)) ≤M ∀y ∈ V.

We claim that h is 6MR-Lipschitz with respect to F. By Proposition 2.12

(7), it is enough to show this in the case dimV = 2. We can assume furthermore

that φ is not constantly 0.
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It suffices to prove that every y ∈ V has a neighborhood U such that

F(h(y′) − h(y)) ≤ 6MR‖y′ − y‖ for all y′ ∈ U.

We fix an orthogonal basis of V and identify V with R
2.

First, suppose that y = 0. Then h(0) = χ(φ)δ0 by 2.12 (1); h(y′) =
∑k

i=1 aiδri
with

∑k
i=1 ai = χ(φ) (2.12 (3)),

∑k
i=1 |ai| ≤M and |ri| ≤ R‖y′‖.

Then

F

( k∑

i=1

aiδri − χ(φ)δ0

)

≤
k∑

i=1

|ai|F(δri − δ0) ≤
k∑

i=1

|ai|R‖y
′‖ ≤MR‖y′‖.

Next we suppose that y 6= 0. Using homogeneity, we can assume, without

loss of generality, that y = (1, 0).

By Theorem 2.3, there exists a C2-cell decomposition of R
2 such that φ is

constant on each cell. We can refine the decomposition and assume that each of

the functions ξD,i, i = 1, . . . , l(D), where D runs over the cells of R, is convex

or concave.

Lemma 3.2: If ξ: I → R is a convex or concave C2-function on a bounded open

interval I ⊂ R such that graph(ξ) ⊂ B(0, R), then for s ∈ I

|ξ′(s)| ≤
2R

d(s, ∂I)
.

Proof: Easy exercise.

Since φ has compact support, it is non-zero only on finitely many, bounded

cells. Fix a number 0 < ρmax < 1/2 such that 12Rρmax is smaller than the

lengths of the cells in R above which φ is non-zero.

Lemma 3.3: Let y′ = (y′1, y
′
2) ∈ R

2 with ρ := ‖y − y′‖ < ρmax. Let t ∈ D,

where D is an open cell of R and suppose d(t, ∂D) > ǫ := 6ρR. Then each

intersection of the line Lt = Lt(y
′) defined by

Lt = {(x1, x2) ∈ R
2 : y′1x1 + y′2x2 = t}

with a cell contained in B(0, R) is empty or transversal.

Proof: Let D = (a, b), where a = −∞ or b = ∞ is possible.

Let (x1, x2) ∈ B(0, R) be the intersection of Lt with a cell.

Then

ρR ≥ |y′2x2| = |t− x1 + x1 − y′1x1| ≥ |t− x1| − |x1(1 − y′1)| ≥ |t− x1| − ρR,
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which implies |t− x1| ≤ 2ρR = ǫ/3.

It follows that x1 ∈ D and d(x1, ∂D) > 2/3ǫ.

The cell in which (x1, x2) lies is either a band or a graph of a function ξ = ξD,i.

In the first case, the intersection is trivially transversal.

In the second case,

|ξ′(x1)| ≤
2R

d(x1, ∂D)
<

3R

ǫ
=

1

2ρ
.

If the intersection is non-transversal, then y′2 6= 0 and

1

2ρ
≤

|y′1|

|y′2|
= |ξ′(x1)| <

1

2ρ
,

a contradiction.

Let r1 < · · · < rk be the endpoints of the cells of R. Denote by π the projection

of R
2 to the first coordinate. Since the Euler characteristic of π−1(s)∩ φ, s ∈ R

is constant on each cell, hφ(y) is concentrated on {r1, . . . , rk}, say hφ(y) =
∑k

i=1 aiδri .

Denote π′: R
2 → R, x 7→ 〈x, y′〉. Let t ∈ R be at distance at least ǫ from

{r1, . . . , rk}. By Lemma 3.3, (π′)−1(t) = Lt(y
′) intersects the cell decomposition

transversally, which implies that

χ((π′)−1(t)) = χ(π−1(t)).

It follows that, if hφ(y
′) =

∑l
j=1 bjδsj , then the sj are contained in the open

ǫ-neighborhood of {r1, . . . , rk}. Note that the ǫ-neighborhoods of the different

ri are disjoint by choice of ǫ.

From Theorem 2.6 and Proposition 2.10, applied to the function

[ri − ǫ, ri + ǫ) → Z, s 7→ χ(π−1(s) ∩ φ)

we infer that

χ(π−1[ri − ǫ, r + ǫ) ∩ φ) = ai.

In the same way,

χ((π′)−1[ri − ǫ, r + ǫ) ∩ φ) =
∑

j:|sj−ri|≤ǫ

bj .

The intersection of the strip π−1[ri − ǫ, r + ǫ) with the cell decomposition is

transversal by Lemma 3.3. The same is true for all y′′ on the line between y
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and y′. By simple counting (or by applying Thom’s isotopy lemma, [18], [25]),

we obtain that the Euler characteristics are equal, which means that

∑

j:|sj−ri|≤ǫ

bj = ai.

Using F(δt − δs) ≤ |s− t| for reals s, t, we get that

F(hφ(y
′) − hφ(y)) = F

( k∑

i=1

∑

j:|sj−ri|≤ǫ

(bjδsj − bjδri)

)

≤
k∑

i=1

∑

j:|sj−ri|≤ǫ

F(bjδsj − bjδri)
︸ ︷︷ ︸

≤ε|bj |

≤ ǫ

l∑

j=1

|bj |

= ǫM(hφ(y
′))

≤ 6MR‖y′ − y‖.

We deduce that h is 6MR-Lipschitz.

Remark: For later use we note the following. Let φ: V → Z be a constructible

function with support in B(0, R). Let D ⊂ V be a C2-cell such that h = hφ is

given on D by

h(y) =

k∑

i=1

aiδfi(y)

with definable C2-functions fi: D → R, f1 < · · · < fk and non-zero natural

numbers ai. Then the above argument shows that the norm of the gradient of

each fi is bounded by 6R.

Uniqueness: Let h = hφ be the support function of a compactly supported

constructible function φ. Then χ(φ) = h(y)(1) for all y ∈ V , in particular χ(φ)

can be computed from h.

We compute that, for all t ∈ R,

h(y)(−∞, t) =

∫

V

φ(x)1{x′∈V :〈x′,y〉<t}(x)dχ(x).

Since h is definable, the function

ψx(y) := h(y)(−∞, 〈x, y〉)
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is constructible.

It easily follows from Fubini’s Theorem that

φ(x) = χ(φ) + (−1)n−1

∫

V

ψx(y)dχ(y).

This holds true for all x ∈ V and thus φ is unique.

Lipschitz implies compact support: Suppose that h: V → Z[R] is definable,

homogeneous and Lipschitz with Lipschitz constant L > 0. We will show that

h is the support function of a constructible function with support in B(0, L).

Step 1: We claim that spth(y) ⊂ [−L‖y‖, L‖y‖] for all y ∈ V . To prove the

claim, fix y ∈ V and suppose that h(y) =
∑k
i=1 aiδri with ai ∈ Z, ai 6= 0 and

r1 < r2 < · · · < rk. Suppose rk > 0.

Fix a real number λ > 1 such that λrk−1 < rk and (λ− 1)rk < 1. Let f be a

piecewise affine function which equals 0 on (−∞, rk], grows linearly on [rk, λrk],

equals 1 at λrk and which is symmetric with respect to the center λrk. By

homogeneity, h(λy) =
∑k

i=1 aiδλri and therefore h(λy)(f) = ak, h(y)(f) = 0.

Approximating f by compactly supported smooth functions and using that h is

L-Lipschitz with respect to F , we obtain

|ak| = |h(λy)(f) − h(y)(f)| ≤ L‖λy − y‖max{‖f‖∞
︸ ︷︷ ︸

=1

, ‖f ′‖∞
︸ ︷︷ ︸

= 1
(λ−1)rk

} = L‖y‖/rk.

We deduce that rk ≤ L‖y‖ and similarly r1 ≥ −L‖y‖.

Step 2: With h being Lipschitz, the value a := h(y)(1) ∈ Z is independent of

y ∈ V .

Since h is definable, the function

ψx(y) := h(y)(−∞, 〈x, y〉)

is constructible.

We have seen in the uniqueness proof that if there exists φ with hφ = h, then

φ has to be given by

φ(x) := a+ (−1)n−1

∫

V

ψx(y)dχ(y).

We claim that indeed hφ = h.

Given v0 ∈ S(V ) and t0 ∈ R, we set

W0 := {x ∈ V : 〈x, v0〉 = t0}.



386 A. BERNIG Isr. J. Math.

Fubini’s theorem shows that
∫

W0

∫

V

ψx(y)dχ(y)dχ(x) =

∫

V

∫

W0

ψx(y)dχ(x)dχ(y).

We evaluate the inner integral and consider several cases for y.

(1) y = 0. By homogeneity, h(0) = aδ0 and thus ψx(0) = 0 for all x. It follows

∫

W0

ψx(0)dχ(x) = 0.

(2) y‖v0, y 6= 0. For λ > 0 we obtain

ψx(λv0) = h(λv0)(−∞, 〈x, λv0〉) = h(v0)(−∞, t0)

ψx(−λv0) = h(−v0)(−∞,−t0).

and thus
∫

W0

ψx(λv0)dχ(x) = (−1)n−1h(v0)(−∞, t0)

∫

W0

ψx(−λv0)dχ(x) = (−1)n−1h(−v0)(−∞,−t0).

(3) y 6 ‖v0. With y⊥ := y − 〈y, v0〉v0 we get 〈y⊥, v0〉 = 0 and 〈y⊥, y〉 > 0.

For x0 ∈ W0, the line l := {x0 + sy⊥ : s ∈ R} is contained in W0 and

we compute, using Proposition 2.10, (3),

∫

l

ψx(y)dχ(x) =

∫

R

ψx0+sy⊥(y)dχ(s)

=

∫

R

h(y)(−∞, 〈x0 + sy⊥, y〉)dχ(s)

=

∫

R

h(y)(−∞, s′)dχ(s′)

= −a.

This is true for all lines in W0 parallel to y⊥ and implies, by Fubini’s

theorem, ∫

W0

ψx(y)dχ(x) = (−1)n−1a.

From these considerations, we deduce that
∫

V

∫

W0

ψx(y)dχ(x)dχ(y) =(−1)n
(
h(v0)(−∞, t0)

+ h(−v0)(−∞,−t0)
)

+ (1 + (−1)n)(−1)n−1a.
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It follows that
∫

W0

φ(x)dχ(x) = a− h(v0)(−∞, t0) − h(−v0)(−∞,−t0),

from which we easily deduce that hφ = h on S(V ), and then, by homogeneity

of both sides, on V .

Step 3:

Lemma 3.4: Let D ⊂ V be a C1-cell and let h: D → Z[R] be given by h(y) =
∑k

i=1 aiδfi(y) with real-valued C1-functions f1 < · · · < fk on D and non-zero

integers ai. If h is L-Lipschitz with respect to F, then ‖ gradfi(y)‖ ≤ L for all

y ∈ D and i = 1, . . . , k.

Proof: Fix y ∈ D and i ∈ {1, . . . , k} and set c := fi(y). Let 1 > η > 0 be

smaller than the minimum of fi+1(y) − fi(y) and fi(y) − fi−1(y) (if i = 1 or

i = k or even k = 1 then the corresponding difference will be set to be ∞).

By continuity of the fi, there exists a neighborhood U ⊂ D of y such that

fi+1(y
′) > c+ η, fi−1(y

′) < c− η and c− η ≤ fi(y
′) ≤ c+ η for y′ ∈ U .

Define a piecewise affine function g on R by

g(z) =

{

1 − |z−c|
η

z ∈ [c− η, c+ η]
0 otherwise.

Since h is L-Lipschitz and since ‖g‖∞ = 1 < 1/η, ‖g′‖∞ = 1/η, we get for all

y′ ∈ U

|ai|

η
|fi(y

′) − fi(y)| = |aig(fi(y
′)) − aig(fi(y))| = |h(y)(g) − h(y′)(g)|

≤
L

η
‖y′ − y‖.

It follows that ‖ gradfi‖ ≤ L/ai ≤ L.

Step 4: Let x ∈ V with t := ‖x‖ > L. Write x = tv0 with v0 ∈ S(V ) and fix

y0 ∈ V .

We claim that the function g: R → Z defined by

g(s) := h(y0 + sv0)(−∞, 〈x, y0 + sv0〉
︸ ︷︷ ︸

〈x,y0〉+st

)

is continuous from the left.
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The function s 7→ h(y0 + sv0) is definable and L-Lipschitz by hypothesis. Fix

s0 ∈ R. For all s in some interval (s0 − ǫ, s0), we get

h(y0 + sv0) =

k∑

i=1

aiδfi(s),

with definable, real-valued C1-functions f1 < · · · < fk. Lemma 3.4 implies that

they are L-Lipschitz. Each fi is bounded (compare with Step 1) and can be

extended by continuity to s0. Then we also have h(y0 + s0v0) =
∑k

i=1 aiδfi(s0).

It follows that

g(s) =
∑

i:fi(s)<〈x,y0〉+st

ai

for all s ∈ (s0 − ǫ, s0].

If fi(s0) 6= c := 〈x, y0〉 + s0t, then either fi(s) < 〈x, y0〉 + st or fi(s) >

〈x, y0〉 + st for all s in some (maybe smaller) interval (s0 − ǫ, s0].

If fi(s0) = c, then, since fi is L-Lipschitz, for all s < s0 near s0

fi(s) ≥ fi(s0) + L(s− s0) = 〈x, y0〉 + st+ (t− L)(s0 − s) ≥ 〈x, y0〉 + st.

We deduce that g(s) = g(s0) for all s < s0 near s0, which proves the claim.

Step 5: The function g from Step 4 is continuous from the left and satisfies

lims→∞ g(s) = a, since spth(y0+sv0) ⊂ (−∞, 〈x, y0+sv0〉) for large s (compare

with Step 1).

With l := {y0 + sv0 : s ∈ R}, and using Proposition 2.10 (3), we get

∫

l

ψx(y)dχ(y) =

∫

R

g(s)dχ(s) = −a.

The same holds for every line parallel to v0. Fubini’s theorem implies that

φ(x) = a+ (−1)n−1

∫

V

ψx(y)dχ(y) = 0.

Therefore the support of φ is contained in B(0, L).

4. Definable Legendrian cycles

4.1. Definable currents. Let Dk(Rn) denote the space of k-forms with

compact support on R
n. The topology of Dk(Rn) is the usual one, which is

characterized by the fact that a sequence ω1, ω2, . . . ∈ Dk(Rn) converges to
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ω ∈ Dk(Rn) if and only if there is a compact set K ⊂ R
n such that the supports

of ω1, . . . are contained in K and such that all partial derivatives (of arbitrary

degree) of the coefficients of ωj converge uniformly to the corresponding deriva-

tives of the coefficients of ω.

Definition 4.1: A continuous functional T : Dk(Rn) → R is called a (Federer-

Fleming-) k-current on R
n. The space of k-currents is denoted by Dk(Rn) =

(Dk(Rn))∗.

The boundary ∂T of T ∈ Dk(Rn) is the current ∂T ∈ Dk−1(R
n) defined by

∂T (ω) = T (dω) ∀ω ∈ Dk−1(Rn).

T is called a cycle if ∂T = 0.

The restriction of T ∈ Dk(Rn) to a form ξ ∈ Dl(Rn), l ≤ k is the current

T xξ ∈ Dk−l(Rn) with

T xξ(ω) = T (ξ ∧ ω) ∀ω ∈ Dk−l(Rn).

The support of T ∈ Dk(R
n) is the closed set

sptT :=

{
⋂

K⊂Rn

K closed : T (ω) = 0 for all ω ∈ Dk(Rn) with sptω ⊂ R
n\K

}

.

Example: An oriented, k-dimensional C1-manifold M with boundary ∂M de-

fines a k-current [[M ]] ∈ Dk(Rn) by

[[M ]](ω) =

∫

M

ω, ω ∈ Dk(Rn).

Stokes’s theorem implies that

∂[[M ]] = [[∂M ]].

In the same way, oriented k-dimensional cells of a C1-cell decomposition of

R
n define k-currents whose boundaries are given by integration over k − 1-

dimensional cells.

Definition 4.2: A current T ∈ Dk(Rn) is called definable if there exists a

definable C1-cell decomposition and for each k-cell D an orientation of D and

a number nD such that

T =
∑

D

nD[[D]].
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The mass of T is defined by

M(T ) :=
∑

D

|nD| vol
k

(D) ∈ [0,∞].

The boundary of a definable current is again a definable current. It follows

that definable currents are locally integral currents in the sense of [13]. In

particular, they are locally normal currents, i.e. the mass and the mass of the

boundary are finite on compact sets.

If T ∈ Dk(Rn) and A ⊂ R
n are definable, then the current T xA defined by

T xA =
∑

D

nD[[D ∩A]],

is again a definable current.

Given a definable C1-map f : R
n → R

m which is proper on the support of T

(i.e. f−1(K)∩ sptT is compact whenever K ⊂ R
m is compact), the current f∗T

with

f∗T (ω) := T (f∗ω)

is again a definable current, called the image of T under f . Note that f∗ ◦ ∂ =

∂ ◦ f∗.

Given definable currents S ∈ Dk(Rn) and T ∈ Dl(Rm), their direct product

S × T ∈ Dk+l(Rn × R
m) is defined in the obvious way, i.e. S × T is defined by

integration over the products of the cells of S and T , counted with the product

of the multiplicities.

Proposition 4.3 (Homotopy formula): Let T ∈ Dk(Rn). Suppose

H : [0, 1]× R
n → R

n

is a definable C1 homotopy of R
n between f and g such that H−1(K) ∩ sptT

is compact in [0, 1] × R
n for any compact set K ⊂ R

n. Then

g∗T − f∗T = ∂H∗([0, 1] × T ) +H∗([0, 1] × ∂T ).

Proof: The assumption implies that the currents

H∗(T × [0, 1]) and H∗(∂T × [0, 1])

are well-defined. The formula follows from

∂H∗([0, 1] × T ) = H∗∂([0, 1]× T )

= H∗((∂[0, 1]) × T ) −H∗([0, 1] × ∂T )

= H∗(δ1 × T )
︸ ︷︷ ︸

g∗T

−H∗(δ0 × T )
︸ ︷︷ ︸

f∗T

−H∗([0, 1] × ∂T ).
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For completeness, we prove a very special case of the constancy theorem ([13],

4.1.7):

Proposition 4.4 (Constancy theorem): If a definable current T ∈ Dn(Rn)

satisfies ∂T = 0 and has compact support, then it vanishes.

Proof: Choose a C1 cell decomposition of R
n such that T =

∑

D nD[[D]]. The

n-cells above an n− 1-cell D′ of R
n−1 are given by open bands

Di := {(x, y) ∈ D′ × R : ξD′,i(x) < y < ξD′,i+1(x)}, i = 0, . . . , l(D′),

where ξD′,1 < · · · < ξD′,l(D′) are definable C1 functions on D′ and ξD′,0 =

−∞, ξD′,l(D′)+1 = ∞.

The boundary of [[Di]] is given by integration over the graph of ξD′,i+1

minus integration over the graph of ξD′,i plus some components lying above

the boundary of D′. These boundaries cancel out only if nDi = nDi+1 for

i = 0, . . . , l(D′) − 1. Since the support of T is compact, nD0 = 0 and hence

nDi = 0 for i = 0, 1, . . . , l(D′). The same argument works above each n− 1-cell

D′ of R
n−1 and shows that nD = 0 for all n-dimensional cellsD, i.e. T = 0.

4.2. Slicing definable currents. The next proposition is contained in

[20], [21]. To be precise, it is stated with definable replaced by subanalytic.

However, the proof only relies on properties of subanalytic sets which also hold

in general o-minimal structures.

Proposition 4.5: Let T ∈ Dk(R
n) be a definable current and f : R

n → R
l

a definable map. Then for all y ∈ R
l such that dim f−1(y) ∩ sptT ≤ k − l

and dim f−1(y) ∩ spt ∂T ≤ k − l − 1 there exists a definable current 〈T, f, y〉 ∈

Dk−l(Rn), called slice of T , with the following properties:

(1) spt〈T, f, y〉 ⊂ sptT ∩ f−1(y);

(2) ∂〈T, f, y〉 = (−1)l〈∂T, f, y〉;

(3) if g: R
n → R

m is a definable function which is proper on the support of

T , and f : R
m → R

l any definable function, then

g∗〈T, f ◦ g, y〉 = 〈g∗T, f, y〉

whenever y ∈ R
l and

dim(f ◦g)−1(y)∩sptT ≤ k− l and dim(f ◦g)−1(y)∩spt ∂T ≤ k− l−1;

(4) if f ′: R
n → R

l′ is a definable function, then

〈〈T, f, y〉, f ′, y′〉 = 〈T, (f, f ′), (y, y′)〉
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for all y ∈ R
l, y′ ∈ R

l′ such that the following dimension restrictions

hold: dim f−1(y) ∩ sptT ≤ k − l, dim f−1(y) ∩ spt ∂T ≤ k − l − 1,

dim(f ′)−1(y′) ∩ sptT ≤ k − l′, dim(f ′)−1(y′) ∩ spt ∂T ≤ k − l′ − 1,

dim f−1(y)∩(f ′)−1(y′)∩spt T ≤ k−l−l′, dim f−1(y)∩(f ′)−1(y′)∩spt ∂T ≤

k − l − l′ − 1;

(5) if g: R
l → R

l is a definable diffeomorphism, then

〈T, g ◦ f, y〉 = ε〈T, f, g−1(y)〉

whenever y ∈ R
l with

dim(g◦f)−1(y)∩sptT ≤ k− l and dim(g◦f)−1(y)∩spt ∂T ≤ k− l−1.

Here ε = 1 if g is orientation preserving, and −1 else.

Note that the conditions on the dimensions are satisfied for almost all y ∈ R
l.

The above statement, but with the condition on the dimensions replaced by for

almost all y ∈ R
l, is well-known for any (not necessarily definable) normal

current T (compare with [13], 4.3). In the proof of existence and uniqueness

of normal cycles, we will only use this weaker version of the above proposition.

Only in the construction of the normal cycles associated to projections and

convolutions of constructible functions, we will have to slice at special values

and then we verify that the condition on the dimensions is satisfied.

For our purposes, the most important case is where the function f is the

orthogonal projection πW on a subspace W with dimW = dimT . In this case,

we find a C2-cell decomposition of sptT compatible with πW . If D′ is a cell of

highest dimension in W , then π−1
W (D′) ∩ sptT is a union of graphs on D′. It

follows that for y ∈ D′, the intersection π−1
W (y)∩ spt T is a finite union of points

and the slice 〈T, πW , y〉 (which is 0-dimensional) is the sum of the corresponding

Dirac measures, counted with multiplicities according to the multiplicities of the

cells of sptT .

4.3. Support functions of Legendrian cycles. We fix the following

notation. The canonical projections from V ⊕ V to V are denoted π1 and

π2, the canonical embeddings from V into V ⊕ V are denoted τ1, τ2. We

define maps m: R ⊕ V ⊕ V → V ⊕ V, (λ, x, y) 7→ (x, λy) and mλ: V ⊕ V →

V ⊕ V,mλ(x, y) := m(λ, x, y). Note that m0 = τ1 ◦ π1. The scalar product is

denoted by u: V ⊕ V → R, (x, y) 7→ 〈x, y〉.

The canonical 1-form α on V ⊕ V is defined by α(v) = 〈y, (π1)∗v〉 for v ∈

T(x,y)(V ⊕V ). We will not distinguish notationally between α and its restriction

to SV , making the latter space into a contact manifold.
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Definition 4.6: A Legendrian current is a current T ∈ Dn−1(V ⊕ V ) such

that sptT is contained in SV and such that

T xα = 0.

Definition 4.7: We call a current S ∈ Dn(V ⊕ V ) conical if

(mλ)∗S = S

for λ > 0. S is called Lagrangian if, with ω := −dα denoting the symplectic

form on V ⊕ V ,

Sxω = 0.

We recall that a linear subspace W of V ⊕ V is called isotropic if ω|W = 0.

Then dimW ≤ n and W is called Lagrangian if dimW = n.

Proposition 4.8:

(1) If T is a Legendrian cycle, then T xω = 0.

(2) If S is a conical, definable Lagrangian current on V ⊕ V , then Sxα = 0.

(3) There is a one-to-one correspondence between compactly supported de-

finable Legendrian cycles T and definable, conical Lagrangian cycles S on

V ⊕ V such that π1(sptS) is compact.

Proof: (Compare with [16])

(1) Let φ be an n− 3-form on V ⊕ V . Since ∂T = 0 and T xα = 0, we obtain

T xω(φ) = −T (dα ∧ φ) = T (α ∧ dφ) = 0.

(2) If D is an n-dimensional cell in the support of S and (x, y) ∈ D, then

T(x,y)D is Lagrangian. Let v be the gradient vector field of the function

(x, y) 7→ 1
2‖y‖

2. Since S is conical, v ∈ T(x,y)D and thus α|T(x,y)D =

−vyω|T(x,y)D = 0.

(3) We write [0,∞) not only for the interval, but also for the 1-current defined

by integration over it. Given a compactly supported definable Legendrian

cycle T ,

∂m∗([0,∞) × T ) = −m∗(δ0 × T ) = −(τ1)∗(π1)∗T.

The current (π1)∗T is a compactly supported definable n − 1-cycle in V

and can be filled by a compactly supported definable n-current U , i.e.

∂U = (π1)∗T . Then

S := m∗([0,∞) × T ) + (τ1)∗U
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is a conical Lagrangian cycle and π1(sptS) ⊂ π1(sptT ) ∪ sptU is com-

pact.

Now suppose that S is a conical Lagrangian cycle with π1(sptS) com-

pact. We can assume that S is given by integration over oriented conical

cells and define the current T by intersecting S with SV (i.e. by taking

intersections of the conical cells of S with SV , with the same multiplici-

ties). Then T is a compactly supported Legendrian cycle.

It can be checked that the operations T 7→ S, S 7→ T are inverse to each

other, finishing the proof.

Definition 4.9: Let T ∈ Dn−1(V ⊕V ) be a compactly supported, definable Leg-

endrian cycle and S the associated Lagrangian cycle. The support function

of T is the (almost everywhere defined) function hT : V 7→ Z[R] with

hT (y) := u∗〈S, π2, y〉.

Since S is conical, the support function of a Legendrian cycle T is (almost

everywhere) homogeneous in the sense of 2.12, (2) and can thus be identified

with a function on S(V ).

5. Lipschitz continuity of support functions

Theorem 5.1: Let T ∈ Dn−1(V ⊕ V ) be a definable Legendrian cycle with

compact support. Then hT can be extended to a definable Lipschitz continuous

function V → Z[R] (with respect to F).

Proof:

Step 1: Let S be the definable, conical Lagrangian cycle associated to T .

Suppose that sptS ⊂ B(0, R) × V .

Fix a definable C1-cell decomposition of V ⊕ V , compatible with sptS and

π2 (compare with Theorem 2.3). By reverse induction we can also achieve that

the boundary of a cell in V is a union of cells.

Let D ⊂ sptS be an n-dimensional cell and (x, y) ∈ D. Given v ∈ T(x,y)D,

the Legendrian condition implies that 〈y, dπ1(v)〉 = 0. Therefore du(v) =

〈x, dπ2(v)〉, which implies that

(1) d(π2, u)(v) = (dπ2(v), 〈x, dπ2(v)〉).
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Suppose first that the rank of π2|D is n. Then D′ := π2(D) ⊂ V is an n-

dimensional cell and D is the graph of a definable, C1-smooth function

g: D′ → V . With f(y) := 〈g(y), y〉 for y ∈ D′ we get (π2, u)(D) = graph f .

From Equation (1) we deduce that gradf(y) = g(y) for all y ∈ D′. Since

(g(y), y) ∈ sptS ⊂ B(0, R)×V , the norm of the gradient of f is bounded by R,

which implies that f is locally R-Lipschitz on D′.

If the rank of π2|D is less than n, then Equation (1) implies that also the rank

of (π2, u)|D is less than n and thus (π2, u)∗[[D]] = 0.

We obtain that G := (π2, u)∗S is given by integration over finitely many

(say M) cells of V × R which are graphs of locally R-Lipschitz functions on

n-dimensional cells in V . In particular, G has no vertical components.

Note further that, with πz : V × R → R, (y, z) 7→ z and πy: V × R → V ,

(y, z) 7→ y, we get for almost all y ∈ V

(πz)∗〈G, πy , y〉 = (πz)∗〈(π2, u)∗S, πy, y〉

= (πz)∗ ◦ (π2, u)∗
︸ ︷︷ ︸

=u∗

〈S, πy ◦ (π2, u)
︸ ︷︷ ︸

=π2

, y〉

= h(y),

i.e. G can be considered as “graph” of h.

Step 2: Let y belong to an n− 1-dimensional cell. Then h is continuous at y.

Lemma 5.2: Let D ⊂ V be a k-cell and let f : D → R be a bounded and

definable C1-function. Then there exists a definable C2-cell decomposition of

∂D such that for each cell D′ of dimension k−1 there exists a unique continuous

extension of f on D ∪D′.

Proof: This is a standard argument, a sketch of which will be given. We

fix cell decompositions of the boundary of the graph of f (which is a bounded,

definable, k−1-dimensional subset of V ×R) and of the boundary ofD which are

compatible with the projection to V . Above a k − 1-dimensional cell D′ ⊂ ∂D,

there can only be finitely many k − 1-dimensional cells. Since D is locally

connected, there is exactly one such cell and the result follows.

By the Lemma, we find a refinement of the cell decomposition in such a way

that each of the functions f : D′ → R can be continuously extended to n−1-cells

in the boundary of D′.

Let D′′ be a cell of V of dimension n− 1. Let D′
1 and D′

2 be the two n-cells

of V containing D′′ in their boundary. Note that the induced orientations on

D′′ do not coincide.
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By Step 1, there are representations of the form

h(y) =

k∑

i=1

aiδfi(y) ∀y ∈ D′
1

h(y) =

l∑

j=1

bjδgj(y) ∀y ∈ D′
2,

with locally R-Lipschitz continuous functions f and g.

By construction, the functions fi (resp. gj) extend by continuity to D′
1 ∪D

′′

(resp. D′
2 ∪D

′′). Let r: D′′ → R be the restriction of such a function to D′′.

Let Ir ⊂ {1, . . . , k} be the set of indices i such that fi|D′′ = r and Jr ⊂

{1, . . . , l} be the set of indices j such that gj|D′′ = r.

Since each i belongs to exactly one Ir and each j belongs to exactly one Jr,

and since G has no vertical components, we get

Gxπ−1
y (D′

1 ∪D
′
2) =

∑

r

(
∑

i∈Ir

ai[[graph fi: D
′
1 → R]] +

∑

j∈Jr

bj[[graph gj : D
′
2 → R]]

)

and

∂GxD′′ =
∑

r

(
∑

i∈Ir

ai∂[[graphfi: D
′
1 → R]] +

∑

j∈Jr

bj∂[[graphgj : D
′
2 → R]]

)

=
∑

r

(
∑

i∈Ir

ai[[graph fi: D
′′ → R]] −

∑

j∈Jr

bj[[graph gj : D
′′ → R]]

)

=
∑

r

(
∑

i∈Ir

ai −
∑

j∈Jr

bj

)

[[graph r: D′′ → R]].

On the other hand, ∂G = (π2, u)∗∂S = 0 and thus
∑

i∈Ir
ai =

∑

j∈Jr
bj for

all r.

Let y ∈ D′′ and ǫ > 0. Since fi and gj can be continuously extended to D′′,

we get for all y1 ∈ D′
1 and y2 ∈ D′

2 sufficiently close to y that |fi(y1)−fi(y)| ≤ ǫ

and |gj(y2) − gj(y)| ≤ ǫ.

From
∑

i∈Ir

aiδfi(y) =
∑

i∈Ir

aiδr(y) =
∑

j∈Jr

bjδr(y) =
∑

j∈Jr

bjδgj(y)
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we deduce that

F(h(y1)−h(y2))

=F

(
∑

r

(
∑

i∈Ir

aiδfi(y1) −
∑

j∈Jr

bjδgj(y2)

))

≤F

(
∑

r

∑

i∈Ir

ai(δfi(y1) − δfi(y))

)

+ F

(
∑

r

∑

j∈Jr

bj(δgj(y2) − δgj(y))

)

≤

( k∑

i=1

|ai| +
l∑

j=1

|bj|

)

ǫ.

This proves the claim.

Step 3: Let y1, y2 ∈ V be both contained in n-dimensional cells. For suffi-

ciently small ǫ > 0, each point y′1 with ‖y′1−y1‖ ≤ ǫ satisfies F(h(y′1)−h(y1)) ≤

MR‖y′1 − y1‖ and similarly for y′2 (see Step 1). With a random choice of

y′1 ∈ B(y1, ǫ) and y′2 ∈ B(y2, ǫ), the line between y′1 and y′2 crosses finitely

many n− 1-dimensional cells and stays in the union of the n-dimensional cells

otherwise.

By Step 1, the restriction of h to this line is locally MR-Lipschitz except for

a finite number of points. In these points, h is continuous by Step 2. We deduce

that h is MR-Lipschitz on this line, and it follows that

F(h(y1) − h(y2)) ≤F(h(y1) − h(y′1)) + F(h(y′1) − h(y′2)) + F(h(y′2) − h(y2))

≤2MRǫ+MR‖y′1 − y′2‖

≤4MRǫ+MR‖y1 − y2‖.

Since ǫ can be chosen arbitrarily small, we obtain F(h(y1) − h(y2)) ≤

MR‖y1− y2‖. Since the union of all n-dimensional cells is dense in V , h can be

extended to an MR-Lipschitz continuous, definable function on V .

6. Construction of the normal cycle

We recall that V denotes an oriented, n-dimensional Euclidean vector space.

Definition 6.1: Let φ: V → Z be a constructible function with compact sup-

port. A compactly supported, definable Legendrian cycle T ∈ Dn−1(V ⊕ V ) is

called normal cycle of φ if hT = hφ almost everywhere.

Remark: The normal cycle of φ depends on the orientation of V . Indeed,

changing the orientation of V does not alter hφ, but 〈T, π2, y〉 depends on the
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orientation of the target space V . Therefore, the normal cycle of φ with respect

to the reversed orientation is minus the normal cycle of φ with respect to the

given one.

Theorem 6.2 (Existence and uniqueness of the normal cycle): Each compactly

supported constructible function φ admits a unique normal cycle. Conversely,

each compactly supported definable Legendrian cycle is the normal cycle of a

unique constructible function with compact support.

The first part of this theorem was discovered by Fu ([15]) using deep meth-

ods from Geometric Measure Theory. The proof we will give below uses only

Lipschitz continuity of support functions and basic properties of constructible

functions and definable currents.

We will use the following notation. The normal cycle of a compactly sup-

ported constructible function will be denoted by Tφ. The corresponding conical

Lagrangian cycle will be denoted by Sφ. Given a compactly supported Leg-

endrian cycle T (or a conical Lagrangian cycle S with π1(sptS) compact), we

denote by φT (or φS) the unique compactly supported constructible function

with normal cycle T .

Proof: The proof of the second part was already given. Indeed, if T is a

compactly supported definable Legendrian cycle, then h = hT is definable, ho-

mogeneous and Lipschitz (Theorem 5.1). Theorem 3.1 implies that there is a

unique constructible function φ with compact support such that hφ = h.

Conversely, let φ be constructible with compact support. By Theorem 3.1,

h = hφ is definable, homogeneous and L-Lipschitz for some L > 1 (with re-

spect to F). We have to show that there exists a unique compactly supported,

definable Legendrian cycle T with hT = h.

Existence:

Lemma 6.3: Let D ⊂ V be a C2-cell and f ∈ C2(D). Suppose that D is conical

and f is homogeneous, i.e. λD = D and f(λy) = λf(y) for all λ > 0, y ∈ D.

Then

Γ(D, f) := {(x, y) ∈ V ⊕ V : y ∈ D, 〈x, v〉 = v(f) ∀v ∈ TyD}

is a conical Lagrangian submanifold of V ⊕ V .

Proof: Since D is conical, y ∈ TyD for all y ∈ D. By homogeneity of f ,

〈x, y〉 = f(y) for all (x, y) ∈ Γ(D, f).
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Let (x(t), y(t)) be a differentiable curve in Γ(D, f) with (x(0), y(0)) = (x, y).

Then v := y′(0) ∈ TyD. We obtain

d

dt

∣
∣
∣
t=0

〈x(t), y(t)〉 =
d

dt

∣
∣
∣
t=0

f(y(t)) = v(f).

On the other hand,

d

dt

∣
∣
∣
t=0

〈x(t), y(t)〉 = 〈x′(0), y〉 + 〈x, y′(0)〉
︸ ︷︷ ︸

=v(f)

.

Comparing these formulas yields that 〈x′(0), y〉 = 0, which shows that

α|Γ(D,f) = 0. Differentiation yields dα|Γ(D,f) = 0, i.e. Γ(D, f) is Lagrangian.

It is clear that Γ(D, f) is conical.

Lemma 6.4: Let D, f be as in the preceding lemma and suppose that

‖ gradf‖ ≤ L. Let S be a definable, conical, n − 1-dimensional current on

V ⊕ V with sptS ⊂ Γ(D, f), spt ∂S ⊂ ∂Γ(D, f) and π1(sptS) compact.

If dimD < n−1 or dimD = n−1 and (π2)∗S = 0, then there exists a conical,

definable n-current S′ with sptS′ ⊂ Γ(D, f), spt(∂S−S′) ⊂ ∂Γ(D, f) and such

that π1(sptS′) is contained in the convex hull of π1(sptS) ∪B(0, L).

Proof: For y ∈ D, set g(y) :=
∑dimD

i=1 ei(f)ei, where e1, . . . , edimD is an or-

thonormal base of TyD (if dimD = 0, set g(y) = 0). Clearly (g(y), y) ∈ Γ(D, f)

and ‖g(y)‖ ≤ L.

Define a homotopy

H : [0, 1] × Γ(D, f) → Γ(D, f), (t, (x, y)) 7→ (tx+ (1 − t)g(y), y)

and set S′ := H∗([0, 1] × S).

By the homotopy formula 4.3, up to a current with support in ∂Γ(D, f),

∂S′ = H∗(δ1 × S)
︸ ︷︷ ︸

=S

−H∗(δ0 × S).

If dimD < n − 1, then the second term vanishes since it is an n − 1-current

supported in the dimD-dimensional set {(g(y), y) : y ∈ D}.

If dimD = n− 1 and (π2)∗S = 0, then

H∗(δ0 × S) = (H0)∗S = (g, id)∗ ◦ (π2)∗S = 0.

π1(sptS′) is contained in the convex hull of π1(sptS) ∪ B(0, L), in both

cases.
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Lemma 6.5: Let h: V → Z[R] be homogeneous, definable and L-Lipschitz.

Then there exist finite C2-cell decompositions of V ⊕V and V , compatible with

π2, such that

(1) each cell D ⊂ V is conical and each cell D̃ ⊂ V ⊕V is conical in the second

coordinate;

(2) for each cell D ⊂ V , there exists a finite family F (D) of definable C2-

functions f1 < f2 < · · · < fk and integers a1, . . . , ak with

h(y) =

k∑

i=1

aiδfi(y) ∀y ∈ D;

(3) if D′ ⊂ ∂D, dimD′ = dimD − 1 and f ∈ F (D), then there exists f ′ ∈

F (D′) which is the restriction of the continuous extension of f to D′;

(4) the boundary of each cell is a union of cells;

(5) if D ⊂ V is a cell and f ∈ F (D), then Γ(D, f) is a union of cells.

Proof: In the first step, we construct a cell decomposition of V with (1)–(4).

Since h is homogeneous and definable, we find a conical cell decomposition of V

such that h is given above each cell by h(y) =
∑k
i=1 aiδfi(y). For n-dimensional

cells D, we set F (D) = (f1, . . . , fk). Using Lemma 5.2, we can subdivide the

n − 1-skeleton in such a way that all functions f ∈ F (D) can be continuously

extended to cells of dimension n − 1. For a cell D′ of dimension n − 1, we let

F (D′) be the set of restrictions of all functions belonging to some F (D) with

dimD = n and D′ ⊂ ∂D.

Subdividing the n− 2-skeleton, we can assume that all functions f ∈ F (D),

dimD = n − 1, extend continuously to n − 2-cells. We define F (D′) for

n− 2-cells similarly as above and continue in this way. After n steps, we get a

cell decomposition of V with (1)–(4).

Note that any subdivision of this cell decomposition also satisfies (1)–(4) (we

let F (D′) be the set of restrictions of functions from F (D), where D is the

unique cell of the original decomposition containing D′).

In the second step, we construct a cell decomposition of V ⊕ V which is

π2-compatible with some subdivision of the given cell decomposition and which

satisfies (4) and (5). We choose a cell decomposition of V ⊕V such that Γ(D, f)

is a union of cells for each D of dimension n and f ∈ F (D). By subdividing,

we can achieve that the boundary of each cell is a cell. By subdividing again,

we achieve that the sets Γ(D, f), f ∈ F (D) with dimD = n − 1 are unions of

cells. Continuing in this way, we obtain π2-compatible cell decompositions with

(1)–(5).



Vol. 159, 2007 NORMAL CYCLE 401

We fix cell decompositions as in Lemma 6.5 and set

Y≤k :=
⋃

dimD≤k,f∈F (D)

Γ(D, f).

Lemma 6.6: Let D ⊂ V be a cell and f ∈ F (D). Then

∂Γ(D, f) ⊂ Y≤dimD−1 ∪M,

where M is a subset of dimension < n− 1.

Proof: Let D̃1 ⊂ ∂Γ(D, f) be an n−1-cell and D1 := π2(D̃1). Then D1 ⊂ ∂D,

in particular dimD1 ≤ dimD − 1. By Lemma 6.3 and Stokes’s theorem, α

vanishes on D̃1.

Let (x, y) ∈ D̃1. Then there exists a sequence (xi, yi) ∈ Γ(D, f) converging

to (x, y). As was remarked above, 〈xi, yi〉 = f(yi). By continuity, 〈x, y〉 = f(y).

Consider a differentiable curve γ(t) = (x(t), y(t)) in D̃1 with (x, y) =

(x(0), y(0)) and set v := y′(0). Then

v(f) =
d

dt

∣
∣
∣
t=0

f(y(t)) =
d

dt

∣
∣
∣
t=0

〈x(t), y(t)〉 = 〈x, v〉 + 〈x′(0), y(0)〉
︸ ︷︷ ︸

=α(γ′(0))=0

.

Since π2: D̃1 → D1 is submersive, it follows that (x, y) ∈ Γ(D1, f).

Now we can complete the construction of the normal cycle.

We define a sequence of currents Sk, k = 0, 1, . . . , n such that

• Sk is a conical, definable Lagrangian current with π1(sptSk) ⊂ B(0, L);

• u∗〈Sk, π2, y〉 = h(y) for almost all y ∈ V ;

• spt ∂Sk ⊂ Y≤n−k−1.

For a cell D of dimension n, h|D is given as a finite combination

h|D =

k(D)
∑

i=1

aDi δfD
i
,

with functions fD1 < · · · < fD
k(D) from F (D).

We set

S0 :=
∑

dimD=n

k(D)
∑

i=1

aDi [[Γ(D, fDi )]].

From Lemma 6.3 we deduce that S0 is a definable, conical, Lagrangian current.
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Moreover, π1(sptS0) ⊂ B(0, L) by Lemma 3.4 and

u∗〈S0, π2, y〉 =

k(D)
∑

i=1

aDi u∗〈[[Γ(D, fDi )]], π2, y〉

=

k(D)
∑

i=1

aDi δ〈grad fDi (y),y〉

=

k(D)
∑

i=1

aDi δfDi (y)

= h(y)

for y ∈ D, dimD = n. This means that u∗〈S0, π2, y〉 = h(y) for almost all

y ∈ V .

From Lemma 6.6 we see that ∂S0 is a cycle supported in Y≤n−1.

Let D be an n− 1-cell, f ∈ F (D) and D1, D2 be the n-cells neighboring D.

Then

(∂[[D1]] + ∂[[D2]])xD = 0.

Suppose h(y) =
∑k

i=1 aiδfi on D1. Let s1 be the sum of those ai for which

fi|D = f . We define s2 in a similar way. From the continuity of the support

function, we obtain s1 = s2. Indeed, by (2) and (3), both s1 and s2 equal the

coefficient of δf in h|D.

For each function fi with fi|D = f (and only for those), we get as in the proof

of Lemma 6.6 that

∂Γ(D1, fi) ∩ π
−1
2 D ⊂ Γ(D, f)

and

(π2)∗(∂[[Γ(D1, fi)]]xπ
−1
2 D) = (π2)∗∂[[Γ(D1, fi)]]xD = ∂[[D1]]xD.

In the same way, if h(y) =
∑k′

i=1 a
′
iδf ′

i
on D2 and if f ′

i |D = f , then

(π2)∗(∂[[Γ(D2, f
′
i)]]xπ

−1
2 D) = ∂[[D2]]xD.

We deduce that

(π2)∗(∂S0xΓ(D, f)) = s1∂[[D1]]xD + s2∂[[D2]]xD = 0.

We apply Lemma 6.4 to the currents (∂S0)xΓ(D, f) (where D runs over all

n − 1-dimensional cells and f ∈ F (D)) to deduce that there exists a conical,
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definable, Lagrangian current S′
0 with π1(sptS′

0) ⊂ B(0, L), sptS′
0 ⊂ Yn−1 and

spt(∂S0 − ∂S′
0) ⊂ Y≤n−2. Hence S1 := S0 − S′

0 satisfies all conditions.

Suppose Sk, 0 < k < n is already defined. Then ∂Sk is an n − 1 cy-

cle with support in Y≤n−k−1. Applying Lemma 6.4 yields a conical, defin-

able, Lagrangian current S′
k with π1(sptS′

k) ⊂ B(0, L), sptS′
k ⊂ Yn−k−1 and

spt(∂Sk − ∂S′
k) ⊂ Y≤n−k−2. Hence Sk+1 := Sk − S′

k satisfies all conditions.

In particular, S := Sn is a conical, definable Lagrangian cycle such that

hS(y) = h(y) for almost all y ∈ V and π1(sptS) ⊂ B(0, L). Let T be the

associated Legendrian cycle. Then T is compactly supported, definable and

hT (y) = hS(y) = h(y) for almost all y ∈ V .

Uniqueness: It suffices to show that hS = 0 implies S = 0 for compactly

supported, definable conical Lagrangian cycles S.

Claim: hS = 0 implies that 〈S, π2, y〉 = 0 for almost all y ∈ V .

To prove the claim, we fix C2-cell decompositions of V ⊕ V and V which are

compatible with π2 and sptS. If the conclusion does not hold, there exist a cell

D of V of dimension n, finitely many pairwise and pointwise different definable

C2 functions f1, . . . , fk: D → V and non-vanishing natural numbers ai such

that

〈S, π2, y〉 =

k∑

i=1

aiδ(fi(y),y) ∀y ∈ D.

For almost all y ∈ D we have hS(y) =
∑k
i=1 aiδ〈fi(y),y〉 = 0. This implies that

k > 1 and that there exists some index i 6= 1 with 〈fi(y), y〉 = 〈f1(y), y〉. We thus

find an open subset D′ of D and an index i 6= 1, such that 〈fi(y), y〉 = 〈f1(y), y〉

for all y ∈ D′.

Let y ∈ D′. The Legendrian condition implies that 〈df1(v), y〉 = 〈dfi(v), y〉 =

0 for all v ∈ TyD
′. Setting v := f1(y) − fi(y) 6= 0 we obtain that

d

dt

∣
∣
∣
t=0

〈f1(y + tv) − fi(y + tv), y + tv〉
︸ ︷︷ ︸

=0 since y+tv∈D′ for small t

= 〈f1(y) − fi(y), v〉
︸ ︷︷ ︸

=〈v,v〉6=0

.

This is a contradiction and finishes the proof of the claim.

Let m be the dimension of the projection π2(sptS). Then m < n, since

〈S, π2, y〉 = 0 for almost all y ∈ V . We may choose coordinates in such a way

that dimψ ◦ π2(sptS) = m, where ψ: V → R
m denotes projection on the first

m coordinates.

Suppose S 6= 0. Fix compatible C2-cell decompositions of sptS, π2(sptS)

and ψ ◦ π2(sptS). Let D′ be an m-dimensional cell of ψ ◦ π2(sptS). A cell
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D ⊂ π2(sptS) with ψ(D) = D′ is a graph, since bands would have dimensions

strictly larger than m. It follows that

A := ψ−1(y′) ∩ π2(sptS) ⊂ V

is finite for almost all y′ ∈ D′.

The slice 〈S, ψ ◦ π2, y
′〉 is a non-vanishing definable cycle with support in

V × A. For some y ∈ A, its restriction R to V × {y} is again a non-vanishing

definable cycle. Let D be the cell containing y.

The cell decomposition of sptS induces a natural cell decomposition of sptR,

with cells being the intersections D̃y := D̃ ∩ (V × {y}), where D̃ runs over all

cells of sptS.

Let D̃ ⊂ sptS be an n-dimensional cell with D̃y 6= ∅. Then D = π2(D̃).

Let v ∈ T(x,y)D̃y be a tangent vector. Since D̃ is Lagrangian and T(x,y)D̃y ⊂

T(x,y)D̃, it follows that

〈dπ1(v), dπ2(w)〉 = 〈dπ1(v), dπ2(w)〉 − 〈dπ2(v)
︸ ︷︷ ︸

=0

, dπ1(w)〉 = ω(v, w) = 0

for all w ∈ T(x,y)D̃. In other words, dπ1(v) is orthogonal to TyD.

Let φ: V → TyD denote orthogonal projection. Then the rank of φ ◦ π1,

restricted to D̃y, is 0, which implies that there exists a finite set B ⊂ TyD with

D̃y ⊂ φ−1B × {y}.

Since this is true for all D̃ as above (where B may differ), R is a non-vanishing

definable n − m-cycle with support contained in a finite disjoint union of

n − m-dimensional affine subspaces. This contradicts the constancy Theo-

rem 4.4.

7. Properties of the normal cycle

7.1. Projections. Let W ⊂ V be an oriented linear subspace of dimension

l, W⊥ its orthogonal complement, oriented in such a way that W⊥ ⊕W has

the same orientation as V , and let πW : V → W and πW⊥ : V → W⊥ be the

orthogonal projections.

Proposition 7.1: Let φ be a compactly supported constructible function on

V . Then

(2) S(πW )∗φ = 〈(πW , id)∗Sφ, πW⊥ ◦ π2, 0〉
︸ ︷︷ ︸

=:πW (Sφ)

.



Vol. 159, 2007 NORMAL CYCLE 405

The slice on the right hand exists, is supported in W ⊕W and can be considered

as a current on W ⊕W .

Proof:

Claim 1: The slice exists.

Let S := Sφ and

A := {(x, y) ∈ sptS : y ∈W}.

Let w′
1, . . . , w

′
n−l denote an orthogonal base of W⊥.

Fix a C2-cell decomposition of A, a cell D and (x, y) ∈ D. Suppose that

dimD = d and that the vectors (vi, wi) ∈ T(x,y)D, i = 1, . . . , d form a base of

T(x,y)D. Since Sφ is Lagrangian, ω((vi, wi), (vj , wj)) = 0. From wi ∈ W we

infer that 〈vj , wi〉 = 〈πW (vj), wi〉.

Let L be the subspace generated by the vectors (πW (vi), wi), i = 1, . . . , d.

The subspaces L and ({0} ×W⊥) are transversal and their sum is an isotropic

subspace of V ⊕ V , hence of dimension ≤ n. It follows that

dimL+ dim({0} ×W⊥)
︸ ︷︷ ︸

=n−l

≤ n.

We deduce that rank(πW , id)|D ≤ l and thus dim(πW , id)(D) ≤ l. Since

(πW , id)(A) is a union of such sets, it has dimension ≤ l. It follows that

(3) dim((spt(πW , id)∗S) ∩ (πW⊥ ◦ π2)
−1(0)) ≤ l,

which implies (by Proposition 4.5) that the slice on the right hand side of (2)

exists.

Claim 2: πW (S) is a definable conical Lagrangian cycle in W ⊕W

From Proposition 4.5 (2) we see that the right hand side of (2) is a definable

cycle.

With the notations of Section 4.3 and using 4.5, (3) we see that

(mλ)∗〈(πW , id)∗Sφ, πW⊥ ◦ π2, 0〉 = (mλ)∗〈(πW , id)∗Sφ, πW⊥ ◦ π2 ◦mλ, 0〉

= 〈(mλ)∗ ◦ (πW , id)∗
︸ ︷︷ ︸

=(πW ,id)∗◦(mλ)∗

S, πW⊥ ◦ π2, 0〉

= 〈(πW , id)∗S, πW⊥ ◦ π2, 0〉.

Hence πW (S) is conical.

Since the support of πW (S) is contained in (πW , id)(A), the proof of Claim 1

also shows that this current is Lagrangian.
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Claim 3: The support function of πW (S) equals hS |W

We want to apply Proposition 4.5 (4) to the current (πW , id)∗S and the

orthogonal projections onto the spaces V ⊕W and V ⊕W⊥. We have to check

the condition on the dimension. Since ∂(πW , id)∗S = ∂S = 0, there are only

three conditions. The first one is already proved, see Inequality (3).

Since spt(πW , id)∗S is a definable set of dimension ≤ n, we get for almost all

y ∈W

dim(spt(πW , id)∗S ∩ (πW ◦ π2)
−1(y)) ≤ n− l.

Inequality (3) also implies that for almost all y ∈ W

dim(spt(πW , id)∗S ∩ (πW⊥ ◦ π2)
−1(0) ∩ (πW ◦ π2)

−1(y)) ≤ 0.

We can therefore apply Proposition 4.5 (4) to conclude that

〈〈(πW , id)∗S, πW⊥ ◦ π2, 0〉, πW ◦ π2, y〉 =

〈(πW , id)∗S, (πW⊥ ◦ π2, πW ◦ π2)
︸ ︷︷ ︸

=π2

, (0, y)〉 = (πW , id)∗〈S, π2, y〉

for almost all y ∈ W .

From u ◦ (πW , id) = u on V ⊕ W we obtain that the support function of

the cycle 〈(πW , id)∗S, πW⊥ ◦ π2, 0〉 equals the support function of S for almost

all y ∈ W . Since both functions are Lipschitz continuous (Theorem 5.1), they

coincide for all y ∈ W .

7.2. Products.

Proposition 7.2: Given oriented Euclidean vector spaces V and W and com-

pactly supported constructible functions φ on V and ψ on W ,

Sφ⊗ψ = Sφ × Sψ.

Proof: Straightforward using Proposition 2.12 (6).

7.3. Linear transformations and convolution.

Proposition 7.3: Let A ∈ GL(V ) and φ a compactly supported constructible

function. Then

SA∗φ = sgn(detA) · (A, (A∗)−1)∗Sφ.

Proof: Straightforward using Proposition 2.12 (4).
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Proposition 7.4:

(1) Let φ, ψ be compactly supported constructible functions on V . Let ∆ ⊂

V ⊕ V be the diagonal and τ : ∆ → V, (x, x) 7→ x. Then the normal cycle

of φ ∗ ψ is given by

(4) Sφ∗ψ = (2τ, τ)∗π∆(Sφ × Sψ).

(2) Let ψ = 1B(0,ǫ) and expǫ: SV → SV, (x, v) 7→ (x+ ǫv, v). Then

Tφ∗ψ = expǫ∗Tφ.

Proof:

(1) We do not prove that the current on the right hand side of (4) is a defin-

able, conic Lagrangian cycle, this is a straightforward computation. With

u∆: ∆ × ∆ → R, ((x, x), (y, y)) 7→ 2〈x, y〉 denoting the restriction of the

scalar product of V ⊕ V to ∆, we have u ◦ (2τ, τ) = u∆.

By Propositions 4.5, 7.1 and 7.2, we have for almost all y ∈ V

h(2τ,τ)∗π∆(Sφ×Sψ)(y) = u∗〈(2τ, τ)∗π∆(Sφ × Sψ), π2, y〉

= u∗ ◦ (2τ, τ)∗〈π∆(Sφ × Sψ), π2 ◦ (2τ, τ)
︸ ︷︷ ︸

=τ◦π2

, y〉

= (u∆)∗〈π∆(Sφ × Sψ), π2, τ
−1(y)

︸ ︷︷ ︸

=(y,y)

〉

= hπ∆(Sφ×Sψ)(y, y)

= hφ(y) · hψ(y)

= hφ∗ψ(y).

(2) It is easily checked that expǫ∗Tφ is again a definable Legendrian cycle. Its

support is contained in the ǫ-neighborhood of the support of Tφ, and thus

compact. Now for almost all v ∈ S(V )

hexpǫ
∗
Tφ(v) = u∗〈expǫ∗Tφ, π2, v〉

= u∗expǫ∗〈Tφ, π2 ◦ expǫ
︸ ︷︷ ︸

=π2

, v〉

= δǫ · u∗〈Tφ, π2, v〉

= hψ(v) · hφ(v)

= hφ∗ψ(v),

which shows that expǫ∗Tφ is the normal cycle of φ ∗ ψ.
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Proposition 7.5: Let v ∈ V and denote by trv : V → V, x 7→ x + v the

translation. For a constructible function φ with compact support,

Sφ◦trv = (tr
−v
, id)∗Sφ.

Proof: Straightforward.

8. Support of the normal cycle

Theorem 8.1: Let φ: V → Z be a constructible function with compact support

and T := Tφ, S := Sφ. Then

(1)
π1(sptT ) ⊂ {x ∈ V : φ not constant near x}

π1(sptS) ⊂ sptφ;

(2) if φ is constant near x, then

φ(x) = [π1(T )] ∈ Hn−1(V, V \ {x}) = Z;

(3) there exists a C2-cell decomposition of sptφ such that

sptSφ ⊂
⋃

D cell

NorD.

Here NorD = {(x, y) ∈ V ⊕ V : x ∈ D, y ⊥ TxD} denotes the normal

space of a cell D.

Proof:

(1) Suppose first that sptφ ⊂ B(0, R). By the remark just before the unique-

ness proof of Theorem 3.1, h = hφ is given above each cell by functions

whose gradients are bounded by 6R. The construction in the proof of

Theorem 6.2 can therefore be carried out with L := 6R and shows that

π1(sptTφ) ⊂ B(0, 6R) and π1(Sφ) ⊂ B(0, 6R)

Proposition 7.5 implies that, whenever sptφ ⊂ B(x,R) with x ∈ V ,

R > 0, then π1(sptT ) ⊂ B(x, 6R) and π1(sptSφ) ⊂ B(x, 6R).

Now let φ be constant, say a, near x ∈ V . Then there exists ǫ > 0

such that φ(y) = a for y ∈ B(x, ǫ). Set φ0 := a1B(x,ǫ) and let T0 := Tφ0 ,

S0 := Sφ0 .

Since x /∈ spt(φ−φ0), we can use compactness to write φ−φ0 as a finite

sum φ−φ0 =
∑k

i=1 φi such that sptφi ⊂ spt(φ−φ0) and such that sptφi

is contained in some ball B(xi, ri) with the property that x /∈ B(xi, 6ri).
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Let Ti := Tφi , Si = Sφi . Then π1(spt Ti) ⊂ B(xi, 6ri) and π1(sptSi) ⊂

B(xi, 6ri), i.e. x /∈ π1(sptTi) and x /∈ π1(sptSi).

Since T − T0 =
∑k

i=1 Ti, x /∈ π1(spt(T − T0)). An easy computation

shows that, in the case a 6= 0, π1(sptT0) = S(x, ǫ). Therefore we obtain

x /∈ π1(sptT ).

If x /∈ sptφ, then S0 = 0. Thus S =
∑k

i=1 Si and we deduce that

x /∈ π1(sptS).

(2) Note that spt(π1(Ti)) ⊂ π1(sptTi) is supported in a ball not containing

x, hence [π1(Ti)] = 0. Therefore

[π1(T )] = [aπ1(T0)] = a[Sn−1(x, ǫ)] = φ(x).

(3) By (1), we find definable C2-cell decompositions of sptS and sptφ, com-

patible with π1. We can suppose that all cells of sptS are conical. Let

D′ be such a cell, (x, y) ∈ D′ and D := π1(D
′). Then there are finitely

many vectors v1, . . . , vd ∈ T(x,y)D
′ such that dπ1(vi), i = 1, . . . , d span

TxD. Now 0 = α(vi) = 〈y, dπ1(vi)〉, which implies that y ⊥ TxD.

Theorem 8.2: Let T = Tφ be the normal cycle of the compactly supported

constructible function φ. Let Tǫ := expǫ∗T be the image of T under the geodesic

flow of SV after time ǫ > 0. Then for every x ∈ V

φ(x) = lim
ǫ→0+

[(π1)∗Tǫ] ∈ Hn−1(V, V \ {x}).

Proof: By Proposition 7.4 (2), Tǫ is the normal cycle of the convolution φǫ :=

φ ∗ 1B(0,ǫ). For all z ∈ V

φǫ(z) =

∫

V

φ(y) 1B(0,ǫ)(z − y)
︸ ︷︷ ︸

=1B(z,ǫ)(y)

dχ(y) = χ(φ ∩B(z, ǫ)).

The local conical structure of definable sets ([12], Thm. 4.10, [27]) implies

that the right hand side converges to φ(z) as ǫ tends to 0, i.e. φǫ → φ pointwise.

Using Thom’s isotopy lemma ([25]) we get that, for all small enough ǫ > 0, φǫ

is constant near x. From Theorem 8.1 it follows x /∈ π1(spt(Tǫ)) and

φǫ(x) = [(π1)∗Tǫ].

Letting ǫ tend to 0 on both sides finishes the proof.

Let ρx: V \ {x} → S(x, 1) be the radial projection and ρ∗xdv be the pull-back

of the volume form on S(x, 1). Then for any cycle A on V with support in
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V \ {x} we have

[A] =
1

sn−1
A(ρ∗xdv).

Here sn−1 is the volume of the n− 1-dimensional sphere.

It follows from the previous theorem that

φ(x) =
1

sn−1
lim
ǫ→0+

T ((ρx ◦ π1 ◦ expǫ)∗dv).

As our argument above shows, the support of T is, for small ǫ > 0, disjoint from

the singular set of the differential form (ρx ◦ π1 ◦ expǫ)∗dv (which is given by

the set {(z, v) ∈ SV : z + ǫv = x}).

Example: Let X ⊂ V be a compact, definable submanifold. Theorem 8.2

and some elementary topological arguments imply that the normal cycle of T is

given by integration over the unit normal bundle ofX (which carries a canonical

orientation). Another way to see this is to use Morse theory, see [24]. Similarly,

using stratified Morse theory ([19]), one can show that the normal cycle of a

definable compact subset of V can be described explicitly in terms of Morse

indices associated to height functions, see [11].
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